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Abstract

A new approach to modeling the flow through a porous medium with a well defined structure is presented. This approach

entailed modeling an idealized open cell metal foam based on a fundamental periodic unit of eight cells and solving the flow through

the three-dimensional cellular unit. To model an infinitely large matrix, periodic boundary conditions were set on the walls parallel

to the flow direction, while a pseudo-periodic boundary condition with a prescribed volumetric flow rate was set over the inlet–outlet

pair of the unit cell. The pressure drop data of the flow through the cellular unit were then compared on a length-normalized basis

against experimental data. The pressure drop values predicted by the simulations were consistently 25% lower than the values

obtained in the experiments on a similar foam and under identical flow conditions. One explanation for the discrepancy between the

two sets of data is the lack of pressure drop increasing wall effects in the simulations. The increase in the pressure drop from wall

effects in the simulation was quantified.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

As shown in the experimental work by Boomsma and

Poulikakos (2002), Lage et al. (1996), and Bhattacharya

et al. (2002), open cell metal foams perform well in

forced convection heat transfer applications in addition

to their wide variety of other uses such as light-weight

high-strength structural applications, mechanical energy

absorbers, filters, pneumatic silencers, containment

matrices and burn rate enhancers for solid propellants,
flow straighteners, catalytic reactors, heat sinks, and

heat exchangers. Having a material with great potential

for flow type applications leads to the development of a

suitable model to optimize foam configurations. Mod-

eling of porous media flows of the nature we are inter-

ested in falls under two distinct categories: macroscopic,

where volume averaging is performed and microscopic,

where the details of the flow in/around individual
structural elements of the medium are examined.

There have been several approaches taken to model

the fluid flow through porous media, both analytical and
*Corresponding author. Tel.: +41-1-632-2738; fax: +41-1-632-1176.

E-mail address: dimos.poulikakos@ethz.ch (D. Poulikakos).

0142-727X/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijheatfluidflow.2003.08.002
numerical. These models progressed starting with regu-

larly packed beds of spheres, then moving to more po-
rous fibrous media, and finally to open cell metal foams.

Geometric modeling of the foam is significantly more

difficult than that of packed beds of spheres due to the

foam’s more intricate geometry (Boomsma and Pouli-

kakos, 2001). Despite this, many of the existing analyt-

ical and numerical models based on flow through

granular media have been adapted to describe the flow

through open cell metal foams, with limited success.

1.1. Previous numerical approaches

A wide variety of analytical and numerical models for

porous media analysis have appeared in the literature.

The first of such models is the Darcy law, which was the

first mathematical model of the pressure drop (Dp) of a
porous medium of a length (L) and a permeability (K) to
the flow velocity (U ) in a porous medium based on ex-

perimental observations:

Dp
L

¼ l
K
U ð1Þ

Dupuit’s law (1863) includes a quadratic term, which is

important in the higher flow velocity range:
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Nomenclature

A area [m2]

C form coefficient [m�1]

K permeability [m2]

L length [m]

PPI pores per inch [–]
_QQ Volumetric flow rate

Re Reynolds number [–]

REV representative elementary volume [–]
U velocity [m s�1]

V
*

three-dimensional velocity [m s�1]

W longitudinal velocity [m s�1]

d diameter [m]

n
*

normal [–]

p pressure [Pa]

Greeks

D change [–]

e porosity [%]

l dynamic viscosity [kgm�1 s�1]

q density [kgm�3]

Subscripts

K permeability

o specific

p pore

target desired value
z axial direction

Fig. 1. A close-up of a single cell in an open cell metal foam.
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Dp
L

¼ l
K
U þ qcF

ffiffiffiffi

K
p U 2 ð2Þ

The range of validity of these two models is depen-
dent on the Reynolds number (Re) of the flow as shown

by Kaviany (1995), Boomsma and Poulikakos (2002),

and Antohe et al. (1997). In porous media, there are two

methods of calculating the Re of a flow. The first is the

permeability based method (Eq. (3)). This method is

popular in the studies on granular media because the

permeability is something that is relatively easily mea-

sured through experimentation:

ReK ¼ qUK1=2

l
ð3Þ

This method as mentioned above works well for

various types of porous media, however, open cell metal

foam is a special case due to its high porosity and well

defined solid structure. As was seen in the work by

Boomsma and Poulikakos (2002) and Antohe et al.
(1997), a better method for characterizing the flow

through an open cell metal foam is the pore based

Reynolds number (Eq. (4)). In this method, the square

root of the permeability in Eq. (3) is replaced by the

average pore diameter, dp. This approach considers the

pressure drop controlling specific surface area as a

function of the pore diameter:

Re ¼ qUdp
l

ð4Þ

Various volume averaging approaches have been

used to predict the flow and heat transfer behavior

through a variety of porous media, predominantly in

granular media. These types of volume averaging ap-

proaches work under the condition specified by the Re
(Kaviany, 1995; Renken and Poulikakos, 1988). Good

examples of models which are based on volume aver-

aging of porous media in this fashion are those by Vafai
and Tien (1981), Vafai et al. (1985), Vafai (1984), and

Poulikakos and Renken (1987). However, when con-

sidering the previously made Re restriction on these

models, the conditions which exist in open cell metal
foams go beyond these limitations made for volume

averaging models developed on packed beds of granular

media. The Reynolds number in foams is often much

higher than that reached in packed beds of granular

media because the foam is typically much more porous

(50% < e < 98%) with a higher possible flow velocity

due to the higher porosity. Plus, the form of the foam

structure is quite different than that of the spheres or
densely packed granular media (Fig. 1), which may

cause unpredictable flow patterns to develop and alter

the outcome of a model which was based on granular

media.

These issues can be overcome by taking a new ap-

proach to viewing the highly porous open cell metal

foam medium and attempting to directly model the geo-

metry by defining a representative elementary volume
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(REV) that captures the intricate details of the foam

structure. A similar approach was taken by du Plessis

et al. (1994). In this work, they developed an REV which

attempted to capture the relevant characteristics of an
open cell metal foam based on a set of rectangular

prisms. They used the results of an analytical flow

analysis on this REV to solve the flow through an open

cell foam on a larger scale with relatively good results.

This investigation was later improved by Diedericks and

du Plessis (1997) to include the development of a mo-

mentum transport equation that was valid in both the

linear and quadratic pressure drop regimes in an open
cell metal foam. From these results, it was seen that the

flow through an REV could be reasonably well modeled

by the flow around a system of cylinders. Lu et al. (1998)

took the approach of modeling the fluid flow through

open cell metal foams as a system of cylinders in their

combined flow and heat convection model. Known re-

lations for both the fluid flow and convection coefficient

around a cylinder were employed to develop a numerical
model valid for an entire assembly of cylinders which

defined a fibrous medium. The numerical work was

compared to experiments with reasonably good results,

and it additionally highlighted a detailed set of heat

exchanger design parameters applied to the reported

numerical findings. A direct application of a numerical

flow and heat convection model to open cell metal

foams was performed by Lage et al. (1996). In this work
they reported the results of a volume averaged numeri-

cal model used to predict the flow and heat convection

of a synthetic oil flowing through a large open cell metal

foam heat exchanger used to cool electronics which

generated a large quantity of excess heat.

1.2. Detailed cell modeling

As seen in the work done by Smit and du Plessis

(1999), Diedericks and du Plessis (1997), and du Plessis

et al. (1994), the cell modeling approach simulating the

flow through a porous medium has had some success,

but at these coarse levels of cell representation by rect-

angular prisms was not precise enough to capture the

required flow behavior induced by the intricate geome-

try of the open cell metal foam. However, with rapid
advances in computing power, taking the approach of

detailed cell model with a correspondingly fine volu-

metric mesh becomes more viable to simulate the flow

through an open cell metal foam. If the individual pe-

riodic cell in an open cell metal foam consisting of a

large periodic matrix is accurately modeled, the flow

through the individual cell can be solved with periodic

boundary conditions, thereby modeling the presence of
surrounding cells with the identical flow field. By this

method, the individual periodic cell is then able to

capture all flow characteristics of a larger porous matrix

(Koch et al., 1989).
The next step in the direct cell modeling process is

recreating what is to be considered the most represen-

tative cell structure of an open cell metal foam. Because

the open cell metal foams that were used in the experi-
ments were manufactured following the DUOCEL

production process, the structure of the foam takes on

the shape of a foamed polymer, and not a molten metal

which generates a closed cell foam that lacks an easily

distinguished cell geometry (Baumeister, 1997). The

polymer foam in the DUOCEL production process

takes on a surface tension dominated shape. This sim-

plifies the cell modeling process when a surface mini-
mization program is used, such as Surface Evolver. This

program was developed by Brakke (1992), and the foam

model created using Surface Evolver was first presented

by Phelan et al. (1996). Through the use of Surface

Evolver, the numerically optimized ideal periodic shape

of a foam can be modeled and later meshed for impor-

tation into a flow solver. The pressure drop from the

flow simulations can be compared to the pressure drop
data obtained from flow experiments that were per-

formed on the uncompressed foam blocks as reported in

Boomsma and Poulikakos (2002) as a validity check on

the numerical simulations.
2. Foam structure

2.1. Cell packing

The first step in understanding the structure of a cell

is obtained by considering how cells of equal volume

pack themselves under pressure to most efficiently use

space. This problem has been researched through vari-

ous approaches. A historically popular experimental

approach was the pea-packing experiment. In this ex-
periment, peas were compressed inside a container. The

resulting packed peas were then carefully observed and

the number and shape of the flattened sides were re-

corded. From these and similar experiments Lord Kel-

vin postulated that the ideal packing cell shape was the

so-called ‘‘tetrakaidecahedron’’ which is a figure con-

sisting of six planar quadrilateral faces and eight non-

planar hexagons of zero net curvature (Thomson, 1887).
This shape also satisfies Plateau’s conditions for a net-

work of foam films. Surfaces which bound the cells meet

at 120�, and the lines which are formed by their inter-

sections meet at cos�1ð�1=3Þ, the tetrahedral angle

(Weaire and Phelan, 1994). Lord Kelvin also developed

analytical expressions for the shape of the quadrilateral

and hexagonal faces, and of the tetrakaidecahedron’s 36

equal, planar, non-circular arcs (Weaire and Phelan,
1996) which allow the tetrakaidecahedron to completely

fulfill Plateau’s rules for packing cells. Fig. 2 depicts a

single tetrakaidecahedron cell as described by Lord

Kelvin for a foam which is essentially ‘‘dry’’, meaning



Fig. 2. The 14-sided tetrakaidecahedron cell which has long been

considered the optimal packing cell first proposed by Lord Kelvin in

1887. Notice the curvature of the edges on the cell in both pictures. The

cell at the right has the triangulation of the surface elements high-

lighted for clarity of the 3-D structure.

Fig. 4. The same foam structure as depicted in Fig. 3, but now the

foam has been wetted and the inter-cellular membranes have been

removed to model the open cell metal foam.
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that the porosity is very close to 100% and the foam is

basically a set of films, which is seen in reality when soap

foam is observed.
The tetrakaidecahedron shape was decided upon

mainly through experimentation, and has never been

mathematically proven to be the optimal packing cell.

With this open end, researchers have attempted to im-

prove upon this cell through numerical methods. A

successful attempt was performed by Weaire and Phelan

(1994). These researchers developed a periodic unit of

cells which reduced the surface energy of the packing
cells by 0.3% when compared to the tetrakaidecahedron

of Lord Kelvin while still holding to Plateau’s rules for a

periodic cellular matrix. This unit of eight equal volume

cells consists of six 14-sided polyhedra having 12 pen-

tagonal and two hexagonal faces, and two pentagonal

dodecahedra. This periodic unit of optimal packing cells

is shown in Fig. 3.

Adding a second phase to the foam films shown in
Fig. 3 is a procedure called ‘‘wetting’’ which refers to

increasing the fluid fraction during the foaming process.

This process not only reduces the porosity of the final

foam structure, but more importantly, it generates a

foam that resembles the foam precursor that was used

for the open cell metal foams that were tested in
Fig. 3. The eight cell periodic unit which reduces the surface energy by

a margin of 0.3% when compared to the tetrakaidecahedron Fig. 2.

The figure at right shows the triangulation of the surface elements for

clarity.
Boomsma and Poulikakos (2002), which had a porosity

between 92% and 96%. This wetting process is easily

accomplished with a foam-wetting command in Surface

Evolver which can be indirectly adjusted for various

surface tension values. The foam in Fig. 3 was wetted by
this procedure for a final porosity of approximately

96%. The membranes between the cells were removed,

and the final geometry is shown in Fig. 4. The structure

and orientation of the geometry correspond to the non-

wetted cells displayed in Fig. 3.

To hold to Plateau’s rules for a periodic cellular

structure, the second phase introduced into the foam

through the wetting process must also be subjected to
the same surface energy minimization process. Through

this process, the Plateau borders containing the second,

solid phase are created between the cells, as defined by

Phelan et al. (1996). The characteristic triangular cross-

section of the foams is already apparent in Fig. 4, but a

close-up of the detailed intersection of the Plateau bor-

der shaped foam ligaments at the tetrahedral angle can

be clearly seen in Fig. 5.

2.2. Periodic representation

The basic periodic cellular unit of the foam structure as

depicted in Fig. 4 can be used as a building block to

represent a much larger foam network. This is accom-

plished by meshing the visible void region of the structure

in Fig. 4 as a fluid volume with a periodic grid at the
boundaries. Proper boundary conditions are then selected

so that this volume mesh becomes a representative
Fig. 5. This is a close-up of the tetrahedral joints of the Plateau borders

that are generated by Surface Evolver when modeling a wetted foam,

similar to that in Fig. 4.
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Fig. 6. The 2-D surface grid on the foam structure of a coarse un-

structured mesh of the Weaire–Phelan periodic cellular unit with

219,656 tetrahedral elements and 46,199 vertices.
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elementary volume in a volume averaging technique as

presented in Whitaker (1999). A longitudinal axis is

selected as the primary flow direction and a periodic ve-

locity boundary condition with a prescribed mass (volu-
metric) flow rate is set across the inlet–outlet boundary

pair. This boundary condition models an infinitely large

foam matrix in the primary velocity direction and si-

multaneously drives the flow. Periodic boundary condi-

tions are set in the remaining two directions which

simulate an infinitely large foam network in these direc-

tions, perpendicular to the primary flow direction.

The procedure from cell modeling to the final flow
solving consists of the following steps:

1. The foam geometry is defined in an input file devel-

oped by Phelan et al. (1995) in the Surface Evolver

surface energy minimization program, as described

in Brakke (1992).

2. A second phase is added to the foam via the ‘‘wet-

foam.cmd’’ command provided by Surface Evolver.
The virtual surface tension and porosity of the final

foam can be adjusted by changing specified parame-

ters within the wetfoam.cmd file.

3. The wetted foam now passes through a series of ele-

mental refinements and iterative surface energy mini-

mization processes.

4. After numerical convergence, the resulting geometry

file is exported into an ASCII file.
5. The exported geometry file is imported into the Hy-

permesh mesh generation program (Altair Engineer-

ing).

6. Aboundingbox is constructed and the foam is trimmed

at the intersection with the bounding box so that the

cell ligaments are fused with the bounding box.

7. A 2-D triangular mesh is generated on the surfaces of

the solid cell structure and on three adjacent sides of
the bounding box.

8. The triangular meshes on the bounding box surfaces

are projected onto opposing sides to create identical

surface meshes for periodic boundary conditions with

node-to-node correspondence.

9. An unstructured 3-D tetrahedral mesh is generated

within the volume defined by the connectivity of the

2-D triangular surface grids.
0. The appropriate boundary conditions are defined,

along with the fluid properties and the configuration

is solved, always for a pre-specified flow rate.
3. Flow solving procedure

3.1. Grid generation

The wetted foam structure seen in Fig. 4 was im-

ported into Hypermesh to mesh the void region as the

flow domain. Fig. 6 shows the 2-D surface grid on the
surface of the foam structure from the first attempt of

the meshing procedure on the wetted Weaire–Phelan

periodic unit of 96% porosity. The REV length was

chosen as one periodic length of the unit cell structure,

which corresponded to two cell lengths. Adding to the

REV as seen in Fig. 6 in any direction will simply build a

larger foam network with adjoining solid Plateau bor-
ders. Tetrahedral elements were used to generate the first

attempt of the unstructured mesh with a count of

219,656 elements and 46,199 vertices.

To check the mesh dependency of the solution, the

same Weaire–Phelan structure in Fig. 6 was further re-

fined to total 440,229 tetrahedral cells and 91,651 vertices

while maintaining 96% porosity. This mesh was then

further refined to 826,321 tetrahedral elements with
169,266 vertices. The pressure and velocity data from the

three meshes of varying refinement were compared to

determine if a mesh-independent solution was reached.

3.2. Flow solving routine

The geometry in Fig. 6 was imported into an un-

structured mesh flow solver to solve the flow through the
fluid domain. The unstructured flow solver chosen was

CFD-ACE, which is licensed and distributed by

CFDRC of Huntsville, USA. The steady, three-dimen-

sional Navier–Stokes equations, along with conserva-

tion of mass, are solved via a control volume, pressure

correction, unstructured mesh topology approach em-

ploying multi-grid acceleration. The flow through each

of the grids was first solved by using an upwind scheme
with an algebraic multi-grid solver and a convergence

criterion of 1 · 10�8 to provide an initial condition for

the central differencing scheme, which was used for a

more accurate solution of the flow field in the reported

results. The grids were scaled so that the average di-

ameter of the cells corresponded to that of the 40 PPI

foam that was tested in Boomsma and Poulikakos

(2002) which was 2.3 mm. The volumetric flow rate of
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Fig. 7. A diagram of where the pressure and longitudinal velocity

profiles were taken to measure the accuracy of the pseudo-periodic

boundary condition over the inlet–outlet boundary pair.
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1.587 · 10�6 m3/s was set in the periodic boundary

condition subroutine on the inlet to target an average

flow velocity of 0.075 m/s. With water at 295 K as the

working fluid, this volumetric flow rate corresponded to
a mass flow rate of 0.001582 kg/s through the 4.6

mm · 4.6 mm · 4.6 mm cell.

The user subroutine feature of CFD-ACE allows one

to prescribe custom boundary conditions. However, to

apply true periodic boundary conditions over an inlet–

outlet pair with a flow-driving pressure drop as was

done by Patankar et al. (1977) or simply a volumetric

flow rate, one would have to directly implement the
connectivity between the geometrically corresponding

nodes over the inlet and outlet boundaries in the solver,

which was not possible with CFD-ACE. In this case a

pseudo-periodic condition was developed which simu-

lated a periodic boundary condition over the inlet–outlet

pair. This was accomplished through a subroutine added

to the solver which performed the following steps:

1. The faces of the inlet and outlet boundaries are as-

signed as periodic pairs corresponding to their geo-

metric positions, differing only by an offset in the

flow direction.

2. Zero pressure is set at the outlet and a uniform inflow

velocity corresponding to the target volumetric flow

rate is set at the inlet for the first iteration.

3. After the iteration, the computed three-dimensional
velocity vectors at the outlet are read.

4. The axial velocity component (z-direction) is used to

calculate the volumetric flow rate at the outlet ac-

cording to Eq. (5):

_QQ ¼ ðV
*

� n*zÞA ð5Þ

5. This value is compared to the target volumetric flow

rate, and this axial velocity component is either re-

duced or increased uniformly over the entire bound-

ary so that the newly calculated volumetric flow

rate equals the targeted value according to Eq. (6):

Uz;new ¼
_QQtarget � _QQ

kA
*

k
� Uz;old ð6Þ

6. This 3-D velocity vector using the same x- and y-com-

ponents with the newly calculated z-component

ðUx;Uy ;Uz;newÞ is set at the inlet according to its cor-

responding boundary facial coordinate.

7. The system is iterated and the process loops back to

Step 3 until convergence.
4. Results and discussion

4.1. Pressure and flow velocities

The simulation data from the three grids using a

volumetric flow rate of 1.587 · 10�6 m3/s, corresponding
to an average longitudinal flow velocity of 0.075 m/s and

a mass flow rate of 0.001582 kg/s with water at 295 K

(q ¼ 997 kg/m3), were analyzed for the average flow

velocity and the longitudinal velocity and pressure

profiles at the inlet and outlet. The profile lines were

taken through the midpoint of the periodic cellular unit,

extending from one edge of the unit to the other as

shown in Fig. 7. The solid line at the base of the REV
crosses the flow inlet and the dashed line at the top

crosses the REV outlet. The large vertical arrow shows

the longitudinal flow direction.

Fig. 8 depicts the pressure difference and velocity

profiles over the simulated periodic inlet–outlet pair for

the flow speed of 0.075 m/s. This figure shows simulta-

neously an estimate of the pressure drop associated with

the specified volumetric flow rate (1.5870 · 10�6 m3/s)
and the accuracy of the user-defined periodic flow

boundary condition using a specified volumetric flow

rate. The spike seen in the pressure difference profile of

Fig. 8 is a result of the coarse mesh used at the boundary

between the edge of the periodic cellular unit and the

solid phase of the system. Figs. 9 and 10 show the same

plots for the two refined meshes.

Comparing the accuracy of the periodicity of the
pressure and longitudinal velocity profiles from the three

different meshes revealed the effectiveness of the user-

defined periodic boundary condition when applied to an

inlet–outlet pair. Ideally the pressure difference profile

between the inlet and outlet should be a straight line at

the value of the pressure drop over the cell. However, in

the user subroutine implemented to define the periodic

inlet–outlet condition, only the 3-D velocity vector was
set at the inlet, thereby allowing the pressure to freely

adjust itself to the flow conditions. The longitudinal

velocity profiles over the inlet–outlet pair nearly overlap

with the rough mesh (Fig. 8), and become closer to each

other with the first mesh refinement (Fig. 9), until they

ultimately fall onto the same curve with the highly re-

fined mesh (Fig. 10). These profiles overall showed that



Fig. 8. Pressure drop and axial velocity profiles of the coarse mesh (219,656 tetrahedral elements) generated with a central solving scheme over the

periodic inlet–outlet pair.

Fig. 9. Pressure drop and axial velocity profiles of the first refined mesh (440,229 tetrahedral elements) generated with a central solving scheme over

the periodic inlet–outlet pair.
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the user subroutine which prescribes a volumetric flow
rate and sets the inlet velocity from the outlet velocity

data with a longitudinal velocity correction is a rea-

sonable approach to generating the velocity component

of a periodic inlet–outlet boundary condition. Fig. 11

illustrates some of the flow characteristics observed in

this REV, though the depiction of a selection of char-

acteristic streamlines.

4.2. Comparison to experiments

The pressure drop results from the numerical simu-

lations differing only by the level of mesh refinement

were compared to the pressure drop results of the ex-

periments that were reported in Boomsma and Pouli-
kakos (2002) which most closely modeled both the foam
form and flow conditions. The meshes of the numerical

simulations were scaled so that the average pore diam-

eter was 2.3 mm, which corresponded to the 40 PPI

foam that was tested in Boomsma and Poulikakos

(2002). In the experiment, water was used with a bulk

velocity of 0.075 m/s, passing through an open cell metal

foam of 92% porosity and overall dimensions of 12.0

mm · 38.0 mm · 80.0 mm long. The pressure results
obtained by averaging the 2-D pressure profiles on the

inlet and outlet boundaries from the three different

meshes are tabulated in Table 1.

The porosity of the foam in the simulations was 96%,

compared to the porosity of the foams tested in

Boomsma and Poulikakos (2002) which was 92%. This



Fig. 11. Selection of representative streamlines depicting features of the

flow through the REV: surface pressure distribution and formation of

a three-dimensional recirculation region behind one of the foam liga-

ments.

Fig. 10. Pressure drop and axial velocity profiles of the highly refined mesh (826,321 tetrahedral elements) generated with a central solving scheme

over the periodic inlet–outlet pair.
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difference in porosity makes little difference in the ex-

perimental comparison. In the experimental work by

Bhattacharya et al. (2002), for open cell foams with pore
Table 1

Comparison of the measured pressure drop with the computed one, for the

Mesh # Mesh description Simulation Dp

Cells Vertices Measured [Pa]

1 219,656 46,199 9.0

2 440,229 91,651 9.5

3 826,321 169,266 9.6
diameters of approximately 2 mm within a porosity

range between 91% and 96%, the overall flow resistance

remained nearly constant. This shows the pore diameter,

and not the porosity, increases the specific surface area

(Ao) through the geometrical relationship involved in the
scaling of the structure as confirmed by Boomsma and

Poulikakos (2002). This increase in the specific surface

area has a larger effect on the permeability and overall

flow resistance of a foam than an increase in the solid

fraction of the foam, since viscous drag is the domi-

nating factor of pressure drop through a porous medium

(Lage, 1998), which is governed by the solid-fluid in-

terfacial area. With this knowledge, the pressure drop
information from the numerical simulations which were

done on a mesh scaled to that of the 40 PPI open cell

metal foam (2.3 mm pore diameter) can be directly

compared to the results of the pressure drop experiments

done on the 92% porous foam without extrapolating.

The pressure drop varied up to 7% between the grids

of varying refinement, but the pressure drop obtained

from the simulations remained within 1% between the
two refined meshes, validating the mesh-independent

results from these simulations. The length-normalized

pressure drop obtained from the simulations was ap-

proximately 25% lower than the pressure drop from the

experiment performed on a similar foam. One explana-
various grids

Experimental Dp Difference (%)

Normalized [bar/m] Normalized [bar/m]

0.0197 0.0270 )27.2
0.0206 0.0270 )23.8
0.0209 0.0270 )22.7
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tion is the lack of wall effects in the simulation which

were, however, present in the experiment (Mehta and

Hawley, 1969). To determine the effects of the foam

container walls on the overall pressure drop of the flow
through the foam, numerical simulations were carried

out on Mesh #3 with substituting no-slip walls for the

periodic boundaries parallel to the flow. As expected,

the overall pressure drop for the same flow velocity of

0.075 m/s did increase significantly in the tightly walled

periodic cellular unit, reaching a value of 0.0303 bar/m,

something that has been observed in other studies too,

Vafai and Tien (1981). This pressure drop value exceeds
the experimental pressure drop value from the flow

through the foam of the same pore diameter by 12%,

thereby confirming the periodic walls as the cause of the

discrepancy between the pressure drop values obtained

in the simulations.
5. Conclusion

A new approach for modeling the flow through an

intricately structured porous medium was presented.

This method emulates a periodic boundary condition

over the inlet–outlet pair, driving the flow by specifying
a volumetric flow rate and adjusting the velocity distri-

bution at the inlet according to the flow velocity at the

outlet. The mesh-independent results from the numeri-

cal simulations on the flow through the foam were

compared to experiments with good agreement, con-

sidering the increased flow resistance generated by wall

effects from the foam container in the experiment on the

pressure drop. This pressure drop increase by the con-
tainer walls was also demonstrated in numerical simu-

lations where no-slip container walls substituted the

periodic boundaries containing the flow.
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